3.15.32 \(\int \frac {x^{10}}{(2+x^6)^{3/2}} \, dx\) [1432]

3.15.32.1 Optimal result
3.15.32.2 Mathematica [C] (verified)
3.15.32.3 Rubi [A] (verified)
3.15.32.4 Maple [C] (verified)
3.15.32.5 Fricas [F]
3.15.32.6 Sympy [C] (verification not implemented)
3.15.32.7 Maxima [F]
3.15.32.8 Giac [F]
3.15.32.9 Mupad [F(-1)]

3.15.32.1 Optimal result

Integrand size = 13, antiderivative size = 392 \[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=-\frac {x^5}{3 \sqrt {2+x^6}}+\frac {5 \left (1+\sqrt {3}\right ) x \sqrt {2+x^6}}{6 \left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )}-\frac {5 x \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} E\left (\arccos \left (\frac {\sqrt [3]{2}+\left (1-\sqrt {3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2^{2/3} 3^{3/4} \sqrt {\frac {x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {2+x^6}}-\frac {5 \left (1-\sqrt {3}\right ) x \left (\sqrt [3]{2}+x^2\right ) \sqrt {\frac {2^{2/3}-\sqrt [3]{2} x^2+x^4}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\sqrt [3]{2}+\left (1-\sqrt {3}\right ) x^2}{\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{6\ 2^{2/3} \sqrt [4]{3} \sqrt {\frac {x^2 \left (\sqrt [3]{2}+x^2\right )}{\left (\sqrt [3]{2}+\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {2+x^6}} \]

output
-1/3*x^5/(x^6+2)^(1/2)+5/6*x*(1+3^(1/2))*(x^6+2)^(1/2)/(2^(1/3)+x^2*(1+3^( 
1/2)))-5/6*3^(1/4)*x*(2^(1/3)+x^2)*((2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x 
^2*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)+x^2*(1-3^(1/2)))*(2^(1/3)+x^2*(1+3^(1/2) 
))*EllipticE((1-(2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x^2*(1+3^(1/2)))^2)^( 
1/2),1/4*6^(1/2)+1/4*2^(1/2))*((2^(2/3)-2^(1/3)*x^2+x^4)/(2^(1/3)+x^2*(1+3 
^(1/2)))^2)^(1/2)*2^(1/3)/(x^6+2)^(1/2)/(x^2*(2^(1/3)+x^2)/(2^(1/3)+x^2*(1 
+3^(1/2)))^2)^(1/2)-5/36*x*(2^(1/3)+x^2)*((2^(1/3)+x^2*(1-3^(1/2)))^2/(2^( 
1/3)+x^2*(1+3^(1/2)))^2)^(1/2)/(2^(1/3)+x^2*(1-3^(1/2)))*(2^(1/3)+x^2*(1+3 
^(1/2)))*EllipticF((1-(2^(1/3)+x^2*(1-3^(1/2)))^2/(2^(1/3)+x^2*(1+3^(1/2)) 
)^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(1-3^(1/2))*((2^(2/3)-2^(1/3)*x^2+x^4) 
/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2)*2^(1/3)*3^(3/4)/(x^6+2)^(1/2)/(x^2*(2^ 
(1/3)+x^2)/(2^(1/3)+x^2*(1+3^(1/2)))^2)^(1/2)
 
3.15.32.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 6.68 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.11 \[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=\frac {1}{4} x^5 \left (\frac {2}{\sqrt {2+x^6}}-\sqrt {2} \operatorname {Hypergeometric2F1}\left (\frac {5}{6},\frac {3}{2},\frac {11}{6},-\frac {x^6}{2}\right )\right ) \]

input
Integrate[x^10/(2 + x^6)^(3/2),x]
 
output
(x^5*(2/Sqrt[2 + x^6] - Sqrt[2]*Hypergeometric2F1[5/6, 3/2, 11/6, -1/2*x^6 
]))/4
 
3.15.32.3 Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 406, normalized size of antiderivative = 1.04, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.462, Rules used = {817, 837, 25, 27, 766, 2420}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{10}}{\left (x^6+2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 817

\(\displaystyle \frac {5}{3} \int \frac {x^4}{\sqrt {x^6+2}}dx-\frac {x^5}{3 \sqrt {x^6+2}}\)

\(\Big \downarrow \) 837

\(\displaystyle \frac {5}{3} \left (-\frac {\left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^6+2}}dx}{\sqrt [3]{2}}-\frac {1}{2} \int -\frac {2 x^4+2^{2/3} \left (1-\sqrt {3}\right )}{\sqrt {x^6+2}}dx\right )-\frac {x^5}{3 \sqrt {x^6+2}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {5}{3} \left (\frac {1}{2} \int \frac {2^{2/3} \left (\sqrt [3]{2} x^4-\sqrt {3}+1\right )}{\sqrt {x^6+2}}dx-\frac {\left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^6+2}}dx}{\sqrt [3]{2}}\right )-\frac {x^5}{3 \sqrt {x^6+2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {5}{3} \left (\frac {\int \frac {\sqrt [3]{2} x^4-\sqrt {3}+1}{\sqrt {x^6+2}}dx}{\sqrt [3]{2}}-\frac {\left (1-\sqrt {3}\right ) \int \frac {1}{\sqrt {x^6+2}}dx}{\sqrt [3]{2}}\right )-\frac {x^5}{3 \sqrt {x^6+2}}\)

\(\Big \downarrow \) 766

\(\displaystyle \frac {5}{3} \left (\frac {\int \frac {\sqrt [3]{2} x^4-\sqrt {3}+1}{\sqrt {x^6+2}}dx}{\sqrt [3]{2}}-\frac {\left (1-\sqrt {3}\right ) x \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2\ 2^{2/3} \sqrt [4]{3} \sqrt {\frac {x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt {x^6+2}}\right )-\frac {x^5}{3 \sqrt {x^6+2}}\)

\(\Big \downarrow \) 2420

\(\displaystyle \frac {5}{3} \left (\frac {\frac {\left (1+\sqrt {3}\right ) x \sqrt {x^6+2}}{2^{2/3} \left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )}-\frac {\sqrt [4]{3} x \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} E\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [3]{2} \sqrt {\frac {x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt {x^6+2}}}{\sqrt [3]{2}}-\frac {\left (1-\sqrt {3}\right ) x \left (x^2+\sqrt [3]{2}\right ) \sqrt {\frac {x^4-\sqrt [3]{2} x^2+2^{2/3}}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {\left (1-\sqrt {3}\right ) x^2+\sqrt [3]{2}}{\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2\ 2^{2/3} \sqrt [4]{3} \sqrt {\frac {x^2 \left (x^2+\sqrt [3]{2}\right )}{\left (\left (1+\sqrt {3}\right ) x^2+\sqrt [3]{2}\right )^2}} \sqrt {x^6+2}}\right )-\frac {x^5}{3 \sqrt {x^6+2}}\)

input
Int[x^10/(2 + x^6)^(3/2),x]
 
output
-1/3*x^5/Sqrt[2 + x^6] + (5*((((1 + Sqrt[3])*x*Sqrt[2 + x^6])/(2^(2/3)*(2^ 
(1/3) + (1 + Sqrt[3])*x^2)) - (3^(1/4)*x*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2 
^(1/3)*x^2 + x^4)/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*EllipticE[ArcCos[(2^(1/ 
3) + (1 - Sqrt[3])*x^2)/(2^(1/3) + (1 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/ 
(2^(1/3)*Sqrt[(x^2*(2^(1/3) + x^2))/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*Sqrt[ 
2 + x^6]))/2^(1/3) - ((1 - Sqrt[3])*x*(2^(1/3) + x^2)*Sqrt[(2^(2/3) - 2^(1 
/3)*x^2 + x^4)/(2^(1/3) + (1 + Sqrt[3])*x^2)^2]*EllipticF[ArcCos[(2^(1/3) 
+ (1 - Sqrt[3])*x^2)/(2^(1/3) + (1 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/(2* 
2^(2/3)*3^(1/4)*Sqrt[(x^2*(2^(1/3) + x^2))/(2^(1/3) + (1 + Sqrt[3])*x^2)^2 
]*Sqrt[2 + x^6])))/3
 

3.15.32.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 766
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/ 
(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*((s + 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])* 
r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x 
]
 

rule 817
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^( 
n - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n 
*((m - n + 1)/(b*n*(p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x], x 
] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  ! 
ILtQ[(m + n*(p + 1) + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 837
Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 
3]], s = Denom[Rt[b/a, 3]]}, Simp[(Sqrt[3] - 1)*(s^2/(2*r^2))   Int[1/Sqrt[ 
a + b*x^6], x], x] - Simp[1/(2*r^2)   Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4)/S 
qrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]
 

rule 2420
Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = 
 Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqr 
t[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d*s*x* 
(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2 
*r^2*Sqrt[(r*x^2*(s + r*x^2))/(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]) 
)*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^2)], (2 
 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 
- Sqrt[3])*d, 0]
 
3.15.32.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4.

Time = 6.30 (sec) , antiderivative size = 20, normalized size of antiderivative = 0.05

method result size
meijerg \(\frac {\sqrt {2}\, x^{11} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {3}{2},\frac {11}{6};\frac {17}{6};-\frac {x^{6}}{2}\right )}{44}\) \(20\)
risch \(-\frac {x^{5}}{3 \sqrt {x^{6}+2}}+\frac {\sqrt {2}\, x^{5} {}_{2}^{}{\moversetsp {}{\mundersetsp {}{F_{1}^{}}}}\left (\frac {1}{2},\frac {5}{6};\frac {11}{6};-\frac {x^{6}}{2}\right )}{6}\) \(33\)

input
int(x^10/(x^6+2)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/44*2^(1/2)*x^11*hypergeom([3/2,11/6],[17/6],-1/2*x^6)
 
3.15.32.5 Fricas [F]

\[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=\int { \frac {x^{10}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^10/(x^6+2)^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(x^6 + 2)*x^10/(x^12 + 4*x^6 + 4), x)
 
3.15.32.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.55 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.09 \[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=\frac {\sqrt {2} x^{11} \Gamma \left (\frac {11}{6}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {11}{6} \\ \frac {17}{6} \end {matrix}\middle | {\frac {x^{6} e^{i \pi }}{2}} \right )}}{24 \Gamma \left (\frac {17}{6}\right )} \]

input
integrate(x**10/(x**6+2)**(3/2),x)
 
output
sqrt(2)*x**11*gamma(11/6)*hyper((3/2, 11/6), (17/6,), x**6*exp_polar(I*pi) 
/2)/(24*gamma(17/6))
 
3.15.32.7 Maxima [F]

\[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=\int { \frac {x^{10}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^10/(x^6+2)^(3/2),x, algorithm="maxima")
 
output
integrate(x^10/(x^6 + 2)^(3/2), x)
 
3.15.32.8 Giac [F]

\[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=\int { \frac {x^{10}}{{\left (x^{6} + 2\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^10/(x^6+2)^(3/2),x, algorithm="giac")
 
output
integrate(x^10/(x^6 + 2)^(3/2), x)
 
3.15.32.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^{10}}{\left (2+x^6\right )^{3/2}} \, dx=\int \frac {x^{10}}{{\left (x^6+2\right )}^{3/2}} \,d x \]

input
int(x^10/(x^6 + 2)^(3/2),x)
 
output
int(x^10/(x^6 + 2)^(3/2), x)